Das Millimeter Wave (mmWave)-Spektrum ermöglicht aufgrund der hohen verfügbaren Bandbreite 5G Datenübertragungen mit Gbit/s Geschwindigkeit. Hierfür werden allerdings jederzeit präzise ausgerichtete Antennen benötigt, welches derzeit in mobilen Anwendungsszenarien eine Herausforderung darstellt. Derartige Mobilitätseffekte sind jedoch insbesondere für fest-montierte Fixed-Wireless Access (FWA) Endgeräte leichter zu handhaben. Der direktionale Kanal kann somit zuverlässig für den mobilen Breitbandzugang verwendet werden, jedoch können charakteristische Veränderungen dieses Kanals zudem über die Laufzeit hinweg ausgenutzt werden, um in Echtzeit Rückschlüsse über gewisse Veränderungen der Umgebung ziehen. Eine derartige Verwendung des Kanals als Sensor ist nicht neu – es existiert bereits eine Vielzahl von Beispielen im Smart Home und IoT-Kontext. Hierfür wird üblicherweise das sub-6 GHz Spektrum auf Basis aktueller WLAN-Technologie verwendet. Aber auch im Zellularfunk ist die Nutzerlokalisierung ein Paradebeispiel für die Ausnutzung mehrerer Verbindungen zwischen Netzwerkinstanzen und Endgerät(en).
Die allgegenwärtige Verfügbarkeit von Mobilfunkinfrastruktur und -abdeckung mit umfänglichen „Sensing“-Fähigkeiten ist für viele Sektoren lukrativ. Durch die Verwendung der mmWave Frequenzen bietet sich nun zudem die Möglichkeit hochpräzise Antennenausrichtungsinformationen mit einzubeziehen, um neuartige Sensing-Dienste anzubieten oder herkömmliche Dienste, z. B. die Nutzerlokalisierung, zu verbessern. Das wachsende Interesse sowie die resultierende Nachfrage haben unlängst den Beginn neuer Standardisierungsaktivitäten (IEEE 802.11bf) ausgelöst; für den zukünftigen 6G-Standard wird bereits unter dem Stichwort Joint Communication and Sensing (JCAS) an noch tiefgreifenderen Funktionalitäten geforscht.
Dazu hat das Team der TU Dortmund innerhalb des Konsortiums des Competence Center 5G.NRW eine neuartige Messmethode konzipiert, welche Bewegungen der Millimeter-Größenordnung auf Basis von Informationen zur Antennenausrichtung und über Veränderungen der Kanalphasen detektieren sowie räumlich, d. h. als Bewegungsvektor, rekonstruieren kann. Vor dem Hintergrund verschiedener Anwendungsbeispiele welche in Kooperation mit dem Fraunhofer-Institut für Energieinfrastrukturen und Geothermie (IEG) mit Sitz in Bochum erarbeitet wurden, z. B. dem Absacken von Häusern aufgrund von Subsidenz-Prozessen in ehemaligen Bergbauregionen wie dem hiesigen Ruhrgebiet, wurde anhand von zwei Simulationsszenarien gezeigt, dass solche Bewegungen unter Verwendung von mindestens drei räumlich-getrennten mmWave Verbindungen mit weniger als 10 µm Messfehler gemessen werden können. Die benötigten Ausbreitungspfade können unter anderem durch die Verwendung mehrerer Endgeräte kontrolliert bereitgestellt werden. Mehr Details finden Sie in der verlinkten Veröffentlichung (Autorenversion).
Die Forschungsarbeit wurde auf der 40. IEEE Global Communications Conference (GLOBECOM), eine der beiden Flagship Konferenzen der IEEE Communications Society (IEEE ComSoc), vorgestellt. Sie fand vom 7. bis zum 11. Dezember 2021 in Madrid in einem hybriden Format statt, weswegen der wissenschaftliche Austausch und das Networking zusätzlich mittels eines Browser-basierten Webdienstes unterstützt wurde. Aufgrund der in der Arbeit aufgezeigten Übereinstimmungen mit den drei Säulen der Nachhaltigkeit („Economy, Society, Environment“), wurde die Arbeit im Workshop on Sustainable Environmental Sensing Systems (SESSy) vorgestellt.
Unter den zahlreichen Konferenzbeiträgen fanden sich interessante Forschungsarbeiten aus den Themengebieten „(mmWave) Kommunikation“ und „Sensing“, die immer wieder schlaglichtartig potenzielle Anwendungsfelder des Mobilfunks aufzeigten. Zusätzlich wurde durch verschiedene weitere Vorträge ein Blick in die Zukunft gewagt, in der möglicherweise Terahertz (THz) Frequenzen (> 100 GHz), Radar-ähnliches Sensing und künstliche Intelligenz (KI) umgebungsbewusst-agierende 6G Mobilfunknetze ermöglichen. In den nachfolgenden Abschnitten erfolgt eine kurze Zusammenfassung ausgewählter Highlights:
Sergio Parolari (ZTE) berichtete als stellv. Vorsitzender der 3GPP RAN2 Standardisierung in der Keynote „5G Advanced for a Smart Society: Vertical Applications and Solutions“ über die aktuellen und zukünftigen 5G Releases. So wird Rel.-17 2022 fertiggestellt werden, womit insbesondere neue IIoT Anwendungsfälle ermöglicht werden, u. a. unter Verwendung von kostengünstigen und energiesparsamen Reduced Capability (RedCap) Endgeräten. Das nachfolgende Rel.-18, welches Ende 2023 fertiggestellt werden soll, erweitert 5G unter dem Namen „5G Advanced“ beispielsweise mit verbesserten Möglichkeiten zur Verwendung von KI-Ansätzen, zur Durchführung hochbitratiger Uploads mit geringer Latenz, und umfangreicher Ergänzungen zur ressourceneffizienten und präzisen Nutzerlokalisierung. Der Startschuss für die 6G Standardisierung wird derzeit für 2026 erwartet.
Analog wurden Neuerungen des WLAN Standards durch den Chiphersteller Intel in dem Tutorial „Wi-Fi Unleashed: Wi-Fi 7, 6 GHz, and Beyond“ zusammengefasst. Ein Abgleich der Inhalte mit der vorherigen Keynote unterstreicht, dass die beiden konkurrierenden Technologien die Integration nahezu identischer Features anstreben. Eine solchartige Überlappung stellt beispielsweise die Integration von Sensing Funktionalitäten dar. Eine Vielzahl der GLOBECOM Sessions, z. B. das Tutorial „Integrated Sensing and Communication for 6G: From Theory to Applications“ des Experten Fan Liu (SUSTech, China), beschäftigte sich detailliert mit der durch JCAS angestrebten Integration von Radar-ähnlichen Features, um die Leistungsfähigkeit der Netze durch eigens-akquirierte Kontextinformationen zu verbessern. Die Detektion von Objekten und Personen, der Bestimmung von Distanz-, Winkel- und Geschwindigkeit von Zielen, und der Radar-Bildgebung eröffnen ebenfalls neuartige Dienstleistungsmöglichkeiten, die perspektivisch den Straßenverkehr der Zukunft unterstützen; aber auch die industrielle Wertschöpfung kann durch JCAS gesteigert werden.
In seiner Keynote „Sub-THz Channels and Communications Systems for 6G“ stellte der renommierte Wissenschaftler Prof. Andreas Molisch (Univ. South California, USA) die Nutzung von THz Frequenzen auf den Prüfstand. Hierfür wurde auf etablierte Methoden der im Zuge der für 5G erfolgten Charakterisierung des mmWave Spektrums zurückgegriffen. Die Ergebnisse der vorgestellten Studien unterstreichen, dass eine sinnvolle Verwendung – ähnlich der des mmWave Spektrums – möglich sei, jedoch wird hierfür insbesondere die kommerzielle Hardware reifen müssen. THz Chips könnten zudem speziell zum Zwecke der hochbitratige Kommunikation durch die Orbital Angular Momentum (OAM) Multiplexing Technologie, einem der Arbeitsthemen seiner Forschungsgruppe, erweitert werden. Im Laufe der Konferenz wurden weitere Beiträge zur THz-Kommunikation, sowie der relativ ähnlichen Visible Light Communication (VLC), mit Best Paper Awards ausgezeichnet.
Weitere Informationen zur IEEE GLOBECOM 2021 finden Sie auf der Konferenz-Webseite. Der komplette Konferenzberichtsband erscheint demnächst im Archiv des IEEE.
Weiterführende Links:
- Webseite der Veranstaltung
-
Konferenzbeitrag: S. Häger, S. Böcker, S. Jamali, T. Reinsch, C. Wietfeld, „A Novel System Architecture for Small-Scale Motion Sensing Exploiting 5G mmWave Channels“, in 2021 IEEE Globecom Workshops (GC Wkshps), Workshop on Sustainable Environmental Sensing Systems (SESSy), Madrid, Spain, December 2021. (Autorenversion verfügbar)